Effect of vertical handovers on performance of TCP-friendly rate control

Author:

Gurtov Andrei1,Korhonen Jouni1

Affiliation:

1. TeliaSonera Finland

Abstract

An intersystem or vertical handover is a key enabling mechanism for next generations of mobile communication systems. A vertical handover can cause an abrupt change of up to two orders of magnitude in link bandwidth and latency. It is hard for end-to-end congestion control to adapt promptly to such changes. This is especially a concern for slowly responsive congestion control algorithms, such as TCP-Friendly Rate Control (TFRC). TFRC is designed to provide a smooth transmission rate for real-time applications and, therefore, is less responsive to changes in network conditions than TCP. Using measurements and simulation, we show that TFRC has significant difficulties adapting after a vertical handover. TFRC receives only a fraction of TCP throughput over a fast link, but can be grossly unfair to concurrent TCP flows after handover to a slow link. We show that two proposals based on overbuffering and an explicit handover notification are effective solutions to these problems. Using them, TFRC can quickly adapt to new link characteristics after a handover, while otherwise maintaining a smooth transmission rate.

Publisher

Association for Computing Machinery (ACM)

Reference44 articles.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PePa Ping Dataset;Proceedings of the 12th ACM Multimedia Systems Conference;2021-06-24

2. Performance analysis of vertical handover techniques based on IEEE 802.21: Media independent handover standard;Transactions on Emerging Telecommunications Technologies;2019-07-29

3. A Review of Handover Techniques in Wireless Ad hoc Networks Based on IEEE 802.21 Media Independent Handover Standard;IETE Technical Review;2014-09-03

4. A handover-aware seamless video streaming scheme in heterogeneous wireless networks;annals of telecommunications - annales des télécommunications;2013-03-08

5. Integrating Adaptive Video Streaming Service with Multi-access Network Management;Mobile Networks and Applications;2012-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3