DisLog: A Separation Logic for Disentanglement

Author:

Moine Alexandre1ORCID,Westrick Sam2ORCID,Balzer Stephanie2ORCID

Affiliation:

1. Inria, Paris, France

2. Carnegie Mellon University, Pittsburgh, USA

Abstract

Disentanglement is a run-time property of parallel programs that facilitates task-local reasoning about the memory footprint of parallel tasks. In particular, it ensures that a task does not access any memory locations allocated by another concurrently executing task. Disentanglement can be exploited, for example, to implement a high-performance parallel memory manager, such as in the MPL (MaPLe) compiler for Parallel ML. Prior research on disentanglement has focused on the design of optimizations, either trusting the programmer to provide a disentangled program or relying on runtime instrumentation for detecting and managing entanglement. This paper provides the first static approach to verify that a program is disentangled: it contributes DisLog, a concurrent separation logic for disentanglement. DisLog enriches concurrent separation logic with the notions necessary for reasoning about the fork-join structure of parallel programs, allowing the verification that memory accesses are effectively disentangled. A large class of programs, including race-free programs, exhibit memory access patterns that are disentangled "by construction". To reason about these patterns, the paper distills from DisLog an almost standard concurrent separation logic, called DisLog+. In this high-level logic, no specific reasoning about memory accesses is needed: functional correctness proofs entail disentanglement. The paper illustrates the use of DisLog and DisLog+ on a range of case studies, including two different implementations of parallel deduplication via concurrent hashing. All our results are mechanized in the Coq proof assistant using Iris.

Funder

NSF

Publisher

Association for Computing Machinery (ACM)

Reference46 articles.

1. Dag-calculus: a calculus for parallel computation

2. Data races are evil with no exceptions

3. Andrew W. Appel. 1992. Compiling with Continuations. Cambridge University Press. http://www.cambridge.org/9780521033114

4. Provably space-efficient parallel functional programming

5. Efficient Parallel Functional Programming with Effects

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3