Efficient passage ranking for document databases

Author:

Kaszkiel Marcin1,Zobel Justin1,Sacks-Davis Ron1

Affiliation:

1. RMIT Univ., Melbourne, Australia

Abstract

Queries to text collections are resolved by ranking the documents in the collection and returning the highest-scoring documents to the user. An alternative retrieval method is to rank passages, that is, short fragments of documents, a strategy that can improve effectiveness and identify relevant material in documents that are too large for users to consider as a whole. However, ranking of passages can considerably increase retrieval costs. In this article we explore alternative query evaluation techniques, and develop new tecnhiques for evaluating queries on passages. We show experimentally that, appropriately implemented, effective passage retrieval is practical in limited memory on a desktop machine. Compared to passage ranking with adaptations of current document ranking algorithms, our new “DO-TOS” passage-ranking algorithm requires only a fraction of the resources, at the cost of a small loss of effectiveness.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Heterogeneous graph attention networks for passage retrieval;Information Retrieval Journal;2023-11-16

2. Knowledge Representation of Asset Information and Performance in OT Environments;2023 IEEE 28th International Conference on Emerging Technologies and Factory Automation (ETFA);2023-09-12

3. Indexing: Concepts and Theory;KNOWLEDGE ORGANIZATION;2018

4. Efficient Query Processing for Scalable Web Search;Foundations and Trends® in Information Retrieval;2018

5. A Document Retrieval Model Based on Digital Signal Filtering;ACM Transactions on Information Systems;2015-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3