Fault-Tolerant Network-on-Chip Design with Flexible Spare Core Placement

Author:

Bhanu P. Veda1,Kulkarni Pranav Venkatesh1,J Soumya1

Affiliation:

1. Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, India

Abstract

Network-on-Chip (NoC) has been proposed as a promising solution to overcome the communication challenges of System-on-Chip (SoC) design in nanoscale technologies. With the advancement in the nanoscale technology, the integration density of Intellectual Property (IP) cores in a single chip have increased, leading to heat dissipation, which in turn makes the system unreliable. Therefore, efficient fault-tolerant methods are necessary at different levels to improve overall system performance and make the system to operate normally. This article presents a flexible spare core placement technique for mesh-based NoC by taking several benchmark applications into consideration. An Integer Linear Programming (ILP)-based solution has been proposed for the spare core placement problem. Also, Particle Swarm Optimisation (PSO)-based meta-heuristic has been proposed for the same. Experiments have been performed by taking several application benchmarks reported in the literature and the applications generated using the TGFF tool. Comparisons have been carried out using our approach and the approach followed in the literature (i) by varying the network size with fixed fault percentage in the network, and (ii) by fixing the network size while varying the percentage of faults in the network. We have also compared the overall communication cost and CPU runtime between ILP and PSO approaches. The results show significant reductions in the overall communication cost, average network latency, and network power consumption across all the cases using our approach over the approaches reported in the literature.

Funder

Science Engineering Research Board (SERB), Government of India.

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3