Mathematical Framework for Optimizing Crossbar Allocation for ReRAM-based CNN Accelerators

Author:

Li Wanqian1ORCID,Han Yinhe2ORCID,Chen Xiaoming2ORCID

Affiliation:

1. Institute of Computing Technology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, China

2. Institute of Computing Technology, Chinese Academy of Sciences, China

Abstract

The resistive random-access memory (ReRAM) has widely been used to accelerate convolutional neural networks (CNNs) thanks to its analog in-memory computing capability. ReRAM crossbars not only store layers’ weights, but also perform in-situ matrix-vector multiplications which are core operations of CNNs. To boost the performance of ReRAM-based CNN accelerators, crossbars can be duplicated to explore more intra-layer parallelism. The crossbar allocation scheme can significantly influence both the computing throughput and bandwidth requirements of ReRAM-based CNN accelerators. Under the resource constraints (i.e., crossbars and memory bandwidths), how to find the optimal number of crossbars for each layer to maximize the inference performance for an entire CNN is an unsolved problem. In this work, we find the optimal crossbar allocation scheme by mathematically modeling the problem as a constrained optimization problem and solving it with a dynamic programming based solver. Experiments demonstrate that our model for CNN inference time is almost precise, and the proposed framework can obtain solutions with near-optimal inference time. We also emphasize that communication (i.e., data access) is an important factor and must also be considered when determining the optimal crossbar allocation scheme.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Key Research Program of Frontier Sciences, CAS

Strategic Priority Research Program of CAS

Innovation Funding of ICT, CAS

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3