Quantitative analysis of the speed/accuracy trade-off in transaction level modeling

Author:

Schirner Gunar1,Dömer Rainer1

Affiliation:

1. University of California, Irvine, CA, USA

Abstract

The increasing complexity of embedded systems requires modeling at higher levels of abstraction. Transaction level modeling (TLM) has been proposed to abstract communication for high-speed system simulation and rapid design space exploration. Although being widely accepted for its high performance and efficiency, TLM often exhibits a significant loss in model accuracy. In this article, we systematically analyze and quantify the speed/accuracy trade-off in TLM. To this end, we provide a classification of TLM abstraction levels based on model granularity and define appropriate metrics and test setups to quantitatively measure and compare the performance and accuracy of such models. Addressing several classes of embedded communication protocols, we apply our analysis to three common bus architectures, the industry-standard AMBA advanced high-performance bus (AHB) as an on-chip parallel bus, the controller area network (CAN) as an off-chip serial bus, and the Motorola ColdFire Master Bus as an example for a custom embedded processor bus. Based on the analysis of these individual busses, we then generalize our results for a broader conclusion. The general TLM trade-off offers gains of up to four orders of magnitude in simulation speed, generally however, at the price of low accuracy. We conclude further that model granularity is the key to efficient TLM abstraction, and we identify conditions for accuracy of abstract models. As a result, this article provides general guidelines that allow the system designer to navigate the TLM trade-off effectively and choose the most suitable model for the given application with fast and accurate results.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Reference30 articles.

1. ARM. 1999. AMBA Specification (Rev. 2.0) ARM IHI 0011A. Advanced RISC Machines Ltd. (ARM). ARM. 1999. AMBA Specification (Rev. 2.0) ARM IHI 0011A. Advanced RISC Machines Ltd. (ARM).

2. ARM. 2003. AMBA AHB Cycle Level Interface (AHB CLI) Specification ARM IHI 0011A. Advanced RISC Machines Ltd (ARM). ARM. 2003. AMBA AHB Cycle Level Interface (AHB CLI) Specification ARM IHI 0011A. Advanced RISC Machines Ltd (ARM).

3. Bosch. 1991. CAN Specification 2.0 Ed. Robert Bosch GmbH. Bosch. 1991. CAN Specification 2.0 Ed. Robert Bosch GmbH.

4. Transaction level modeling

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3