Nested Named Entity Recognition: A Survey

Author:

Wang Yu1ORCID,Tong Hanghang2ORCID,Zhu Ziye1ORCID,Li Yun1ORCID

Affiliation:

1. Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu, China

2. University of Illinois at Urbana-Champaign, Urbana, Illinois

Abstract

With the rapid development of text mining, many studies observe that text generally contains a variety of implicit information, and it is important to develop techniques for extracting such information. Named Entity Recognition (NER), the first step of information extraction, mainly identifies names of persons, locations, and organizations in text. Although existing neural-based NER approaches achieve great success in many language domains, most of them normally ignore the nested nature of named entities. Recently, diverse studies focus on the nested NER problem and yield state-of-the-art performance. This survey attempts to provide a comprehensive review on existing approaches for nested NER from the perspectives of the model architecture and the model property, which may help readers have a better understanding of the current research status and ideas. In this survey, we first introduce the background of nested NER, especially the differences between nested NER and traditional (i.e., flat) NER. We then review the existing nested NER approaches from 2002 to 2020 and mainly classify them into five categories according to the model architecture, including early rule-based, layered-based, region-based, hypergraph-based, and transition-based approaches. We also explore in greater depth the impact of key properties unique to nested NER approaches from the model property perspective, namely entity dependency, stage framework, error propagation, and tag scheme. Finally, we summarize the open challenges and point out a few possible future directions in this area. This survey would be useful for three kinds of readers: (i) Newcomers in the field who want to learn about NER, especially for nested NER. (ii) Researchers who want to clarify the relationship and advantages between flat NER and nested NER. (iii) Practitioners who just need to determine which NER technique (i.e., nested or not) works best in their applications.

Funder

National Natural Science Foundation of China

Postgraduate Research & Practice Innovation Program of Jiangsu Province

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference70 articles.

1. Recognising nested named entities in biomedical text

2. Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio. 2015. Neural machine translation by jointly learning to align and translate. In Proceedings of the 3rd International Conference on Learning Representations. 1–15.

3. Krisztian Balog, Pavel Serdyukov, and Arjen P. De Vries. 2010. Overview of the TREC 2010 entity track. In Proceedings of the TREC.

4. A Trust Based Methodology for Web Service Selection

5. Support-vector networks

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3