Random Forest with Self-Paced Bootstrap Learning in Lung Cancer Prognosis
Author:
Affiliation:
1. National University of Defense Technology, China
2. Nantong University, China
3. Shenzhen University, China
4. Sejong University, Korea
5. University of Tasmania, Australia
Abstract
Funder
Natural Science Foundation of Jiangsu Province
Qing Lan Project of Jiangsu Province
Postgraduate Research Innovation Project from Hunan Provincial Department of Education
National Natural Science Foundation of China
Natural Science Foundation of Hunan Province, China
Six Talent Peaks Project of Jiangsu Province
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Hardware and Architecture
Link
https://dl.acm.org/doi/pdf/10.1145/3345314
Reference42 articles.
1. Cancer statistics, 2018
2. Lung cancer cell classification method using artificial neural network;Abdullah Azian Azamimi;Information Engineering Letters,2012
3. Classification of lung cancer using ensemble-based feature selection and machine learning methods
Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Comparison of Various Computational Models for the Accurate Detection of Lung Cancer and Interpreting Using XAI;2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS);2024-04-18
2. Enhanced lung cancer detection: Integrating improved random walker segmentation with artificial neural network and random forest classifier;Heliyon;2024-04
3. Artificial intelligence‐based prediction of the rheological properties of hydrocolloids for plant‐based meat analogues;Journal of the Science of Food and Agriculture;2024-02-08
4. Assessment of subvisible particles in biopharmaceuticals with image feature extraction and machine learning;Chemometrics and Intelligent Laboratory Systems;2024-02
5. Prediction of compressive strength and tensile strain of engineered cementitious composite using machine learning;International Journal of Mechanics and Materials in Design;2024-01-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3