Flexible auto-refresh

Author:

Bhati Ishwar1,Chishti Zeshan2,Lu Shih-Lien2,Jacob Bruce3

Affiliation:

1. Oracle Corporation

2. Intel Corporation

3. University of Maryland

Abstract

DRAM cells require periodic refreshing to preserve data. In JEDEC DDRx devices, a refresh operation is performed via an auto-refresh command, which refreshes multiple rows in multiple banks simultaneously. The internal implementation of auto-refresh is completely opaque outside the DRAM --- all the memory controller can do is to instruct the DRAM to refresh itself --- the DRAM handles all else, in particular determining which rows in which banks are to be refreshed. This is in conflict with a large body of research on reducing the refresh overhead, in which the memory controller needs fine-grained control over which regions of the memory are refreshed. For example, prior works exploit the fact that a subset of DRAM rows can be refreshed at a slower rate than other rows due to access rate or retention period variations. However, such row-granularity approaches cannot use the standard auto-refresh command, which refreshes an entire batch of rows at once and does not permit skipping of rows. Consequently, prior schemes are forced to use explicit sequences of activate (ACT) and precharge (PRE) operations to mimic row-level refreshing. The drawback is that, compared to using JEDEC's auto-refresh mechanism, using explicit ACT and PRE commands is inefficient, both in terms of performance and power. In this paper, we show that even when skipping a high percentage of refresh operations, existing row-granurality refresh techniques are mostly ineffective due to the inherent efficiency disparity between ACT/PRE and the JEDEC auto-refresh mechanism. We propose a modification to the DRAM that extends its existing control-register access protocol to include the DRAM's internal refresh counter. We also introduce a new "dummy refresh" command that skips refresh operations and simply increments the internal counter. We show that these modifications allow a memory controller to reduce as many refreshes as in prior work, while achieving significant energy and performance advantages by using auto-refresh most of the time.

Funder

Intel Corporate Research Council's University Research Office

United State Department of Energy

Sandia National Laboratories

United States Department of Defense

Publisher

Association for Computing Machinery (ACM)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Uncovering In-DRAM RowHammer Protection Mechanisms:A New Methodology, Custom RowHammer Patterns, and Implications;MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture;2021-10-17

2. Refresh Triggered Computation;ACM Transactions on Architecture and Code Optimization;2021-01-21

3. Approximate Memory: Data Storage in the Context of Approximate Computing;Information Storage;2019-11-20

4. Innovations in the Memory System;Synthesis Lectures on Computer Architecture;2019-09-10

5. A Lean, Low Power, Low Latency DRAM Memory Controller for Transprecision Computing;Lecture Notes in Computer Science;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3