DynaSpAM

Author:

Liu Feng1,Ahn Heejin1,Beard Stephen R.1,Oh Taewook1,August David I.1

Affiliation:

1. Princeton University

Abstract

Spatial architectures are more efficient than traditional Out-of-Order (OOO) processors for computationally intensive programs. However, spatial architectures require mapping a program, either statically or dynamically, onto the spatial fabric. Static methods can generate efficient mappings, but they cannot adapt to changing workloads and are not compatible across hardware generations. Current dynamic methods are adaptive and compatible, but do not optimize as well due to their limited use of speculation and small mapping scopes. To overcome the limitations of existing dynamic mapping methods for spatial architectures, while minimizing the inefficiencies inherent in OOO superscalar processors, this paper presents DynaSpAM (Dynamic Spatial Architecture Mapping), a framework that tightly couples a spatial fabric with an OOO pipeline. DynaSpAM coaxes the OOO processor into producing an optimized mapping with a simple modification to the processor's scheduler. The insight behind DynaSpAM is that today's powerful OOO processors do for themselves most of the work necessary to produce a highly optimized mapping for a spatial architecture, including aggressively speculating control and memory dependences, and scheduling instructions using a large window. Evaluation of DynaSpAM shows a geomean speedup of 1.42x for 11 benchmarks from the Rodinia benchmark suite with a geomean 23.9% reduction in energy consumption compared to an 8-issue OOO pipeline.

Funder

National Science Foundation

DARPA

Publisher

Association for Computing Machinery (ACM)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Overview of SDC;Software Defined Chips;2022

2. Compilation System;Software Defined Chips;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3