Testing bipartiteness of geometric intersection graphs

Author:

Eppstein David1

Affiliation:

1. University of California, Irvine, CA

Abstract

We show how to test the bipartiteness of an intersection graph of n line segments or simple polygons in the plane, or of an intersection graph of balls in d -dimensional Euclidean space, in time O ( n log n ). More generally, we find subquadratic algorithms for connectivity and bipartiteness testing of intersection graphs of a broad class of geometric objects. Our algorithms for these problems return either a bipartition of the input or an odd cycle in its intersection graph. We also consider lower bounds for connectivity and k -colorability problems of geometric intersection graphs. For unit balls in d dimensions, connectivity testing has equivalent randomized complexity to construction of Euclidean minimum spanning trees, and for line segments in the plane connectivity testing has the same lower bounds as Hopcroft's point-line incidence testing problem; therefore, for these problems, connectivity is unlikely to be solved as efficiently as bipartiteness. For line segments or planar disks, testing k -colorability of intersection graphs for k > 2 is NP-complete.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Proper colorability of segment intersection graphs;Journal of Combinatorial Optimization;2024-05

2. Extracting Aspects Hierarchies using Rhetorical Structure Theory;Proceedings of the 2018 International Conference on Algorithms, Computing and Artificial Intelligence;2018-12-21

3. 3-coloring arrangements of line segments with 4 slopes is hard;Information Processing Letters;2018-09

4. Listing all spanning trees in Halin graphs — sequential and Parallel view;Discrete Mathematics, Algorithms and Applications;2018-02

5. Shortest paths in intersection graphs of unit disks;Computational Geometry;2015-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3