Attention Models in Graphs

Author:

Lee John Boaz1,Rossi Ryan A.2,Kim Sungchul2,Ahmed Nesreen K.3,Koh Eunyee2

Affiliation:

1. WPI, MA

2. Adobe Research, San Jose, CA

3. Intel Labs, Santa Clara, CA

Abstract

Graph-structured data arise naturally in many different application domains. By representing data as graphs, we can capture entities (i.e., nodes) as well as their relationships (i.e., edges) with each other. Many useful insights can be derived from graph-structured data as demonstrated by an ever-growing body of work focused on graph mining. However, in the real-world, graphs can be both large—with many complex patterns—and noisy, which can pose a problem for effective graph mining. An effective way to deal with this issue is to incorporate “attention” into graph mining solutions. An attention mechanism allows a method to focus on task-relevant parts of the graph, helping it to make better decisions. In this work, we conduct a comprehensive and focused survey of the literature on the emerging field of graph attention models. We introduce three intuitive taxonomies to group existing work. These are based on problem setting (type of input and output), the type of attention mechanism used, and the task (e.g., graph classification, link prediction). We motivate our taxonomies through detailed examples and use each to survey competing approaches from a unique standpoint. Finally, we highlight several challenges in the area and discuss promising directions for future work.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference90 articles.

Cited by 154 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3