Finding minimum type error sources

Author:

Pavlinovic Zvonimir1,King Tim1,Wies Thomas1

Affiliation:

1. New York University, New York, NY, USA

Abstract

Automatic type inference is a popular feature of functional programming languages. If a program cannot be typed, the compiler typically reports a single program location in its error message. This location is the point where the type inference failed, but not necessarily the actual source of the error. Other potential error sources are not even considered. Hence, the compiler often misses the true error source, which increases debugging time for the programmer. In this paper, we present a general framework for automatic localization of type errors. Our algorithm finds all minimum error sources, where the exact definition of minimum is given in terms of a compiler-specific ranking criterion. Compilers can use minimum error sources to produce more meaningful error reports, and for automatic error correction. Our approach works by reducing the search for minimum error sources to an optimization problem that we formulate in terms of weighted maximum satisfiability modulo theories (MaxSMT). The reduction to weighted MaxSMT allows us to build on SMT solvers to support rich type systems and at the same time abstract from the concrete criterion that is used for ranking the error sources. We have implemented an instance of our framework targeted at Hindley-Milner type systems and evaluated it on existing OCaml benchmarks for type error localization. Our evaluation shows that our approach has the potential to significantly improve the quality of type error reports produced by state of the art compilers.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automatic diagnosis and correction of logical errors for functional programming assignments;Proceedings of the ACM on Programming Languages;2018-10-24

2. Learning user friendly type-error messages;Proceedings of the ACM on Programming Languages;2017-10-12

3. How type errors were fixed and what students did?;Proceedings of the ACM on Programming Languages;2017-10-12

4. A Type-Directed Approach to Program Repair;Computer Aided Verification;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3