Cloning-based context-sensitive pointer alias analysis using binary decision diagrams

Author:

Whaley John1,Lam Monica S.1

Affiliation:

1. Stanford University, Stanford, CA

Abstract

This paper presents the first scalable context-sensitive, inclusion-based pointer alias analysis for Java programs. Our approach to context sensitivity is to create a clone of a method for every context of interest, and run a context-insensitive algorithm over the expanded call graph to get context-sensitive results. For precision, we generate a clone for every acyclic path through a program's call graph, treating methods in a strongly connected component as a single node. Normally, this formulation is hopelessly intractable as a call graph often has 10 14 acyclic paths or more. We show that these exponential relations can be computed efficiently using binary decision diagrams (BDDs). Key to the scalability of the technique is a context numbering scheme that exposes the commonalities across contexts. We applied our algorithm to the most popular applications available on Sourceforge, and found that the largest programs, with hundreds of thousands of Java bytecodes, can be analyzed in under 20 minutes.This paper shows that pointer analysis, and many other queries and algorithms, can be described succinctly and declaratively using Datalog, a logic programming language. We have developed a system called bddbddb that automatically translates Datalog programs into highly efficient BDD implementations. We used this approach to develop a variety of context-sensitive algorithms including side effect analysis, type analysis, and escape analysis.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 135 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mobius: Synthesizing Relational Queries with Recursive and Invented Predicates;Proceedings of the ACM on Programming Languages;2023-10-16

2. A Parallel Memory Defect Detection Method based on Sparse-Value-Flow Graph;2023 IEEE International Conference on Joint Cloud Computing (JCC);2023-07

3. IFDS-based Context Debloating for Object-Sensitive Pointer Analysis;ACM Transactions on Software Engineering and Methodology;2023-05-27

4. Selecting Context-Sensitivity Modularly for Accelerating Object-Sensitive Pointer Analysis;IEEE Transactions on Software Engineering;2023-02-01

5. From SMT to ASP: Solver-Based Approaches to Solving Datalog Synthesis-as-Rule-Selection Problems;Proceedings of the ACM on Programming Languages;2023-01-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3