Quality-Enhanced OLED Power Savings on Mobile Devices

Author:

Lin Chun-Han1,Kang Chih-Kai2,Hsiu Pi-Cheng2

Affiliation:

1. National Taiwan Normal University, Taiwan

2. Academia Sinica, Taiwan

Abstract

In the future, mobile systems will increasingly feature more advanced organic light-emitting diode (OLED) displays. The power consumption of these displays is highly dependent on the image content. However, existing OLED power-saving techniques either change the visual experience of users or degrade the visual quality of images in exchange for a reduction in the power consumption. Some techniques attempt to enhance the image quality by employing a compound objective function. In this article, we present a win-win scheme that always enhances the image quality while simultaneously reducing the power consumption. We define metrics to assess the benefits and cost for potential image enhancement and power reduction. We then introduce algorithms that ensure the transformation of images into their quality-enhanced power-saving versions. Next, the win-win scheme is extended to process videos at a justifiable computational cost. All the proposed algorithms are shown to possess the win-win property without assuming accurate OLED power models. Finally, the proposed scheme is realized through a practical camera application and a video camcorder on mobile devices. The results of experiments conducted on a commercial tablet with a popular image database and on a smartphone with real-world videos are very encouraging and provide valuable insights for future research and practices.

Funder

Ministry of Science and Technology of Taiwan

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Reference23 articles.

1. Transform-based image enhancement algorithms with performance measure

2. A Histogram Modification Framework and Its Application for Image Contrast Enhancement

3. J. Betts-LaCroix. 2010. Selective dimming of OLED displays. U.S. Patent 0149223 A1. J. Betts-LaCroix. 2010. Selective dimming of OLED displays. U.S. Patent 0149223 A1.

4. MORPh

5. FingerShadow: An OLED power optimization based on smartphone touch interactions;Chen X.;Proceedings of the USENIX HotPower.,2014

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3