DFR

Author:

Bai Kangjun1,Yi Yang1ORCID

Affiliation:

1. Virginia Polytechnic Institute and State University, Virginia Tech, Blacksburg, VA

Abstract

Neuromorphic computing, which is built on a brain-inspired silicon chip, is uniquely applied to keep pace with the explosive escalation of algorithms and data density on machine learning. Reservoir computing, an emerging computing paradigm based on the recurrent neural network with proven benefits across multifaceted applications, offers an alternative training mechanism only at the readout stage. In this work, we successfully design and fabricate an energy-efficient analog delayed feedback reservoir (DFR) computing system, which is built upon a temporal encoding scheme, a nonlinear transfer function, and a dynamic delayed feedback loop. Measurement results demonstrate its high energy efficiency with rich dynamic behaviors, making the designed system a candidate for low power embedded applications. The system performance, as well as the robustness, are studied and analyzed through the Monte Carlo simulation. The chaotic time series prediction benchmark, NARMA10, is examined through the proposed DFR computing system, and exhibits a 36%−85% reduction on the error rate compared to state-of-the-art DFR computing system designs. To the best of our knowledge, our work represents the first analog integrated circuit (IC) implementation of the DFR computing system.

Funder

Air Force Research Laboratory

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

Reference72 articles.

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cryogenic Operation of Computing-In-Memory based Spiking Neural Network;Proceedings of the 29th ACM/IEEE International Symposium on Low Power Electronics and Design;2024-08-05

2. Physical reservoir computing with emerging electronics;Nature Electronics;2024-03-12

3. Emerging opportunities and challenges for the future of reservoir computing;Nature Communications;2024-03-06

4. MERRC: A Memristor-Enabled Reconfigurable Low-Power Reservoir Computing Architecture at the Edge;IEEE Transactions on Circuits and Systems I: Regular Papers;2024-01

5. Spiking Neural Encoding and Hardware Implementations for Neuromorphic Computing;Neuromorphic Computing;2023-11-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3