Market mechanisms for managing datacenters with heterogeneous microarchitectures

Author:

Guevara Marisabel1,Lubin Benjamin2,Lee Benjamin C.1

Affiliation:

1. Duke University

2. Boston University

Abstract

Specialization of datacenter resources brings performance and energy improvements in response to the growing scale and diversity of cloud applications. Yet heterogeneous hardware adds complexity and volatility to latency-sensitive applications. A resource allocation mechanism that leverages architectural principles can overcome both of these obstacles. We integrate research in heterogeneous architectures with recent advances in multi-agent systems. Embedding architectural insight into proxies that bid on behalf of applications, a market effectively allocates hardware to applications with diverse preferences and valuations. Exploring a space of heterogeneous datacenter configurations, which mix server-class Xeon and mobile-class Atom processors, we find an optimal heterogeneous balance that improves both welfare and energy-efficiency. We further design and evaluate twelve design points along the Xeon-to-Atom spectrum, and find that a mix of three processor architectures achieves a 12× reduction in response time violations relative to equal-power homogeneous systems.

Funder

Microelectronics Advanced Research Corporation

Division of Computing and Communication Foundations

Defense Advanced Research Projects Agency

Semiconductor Research Corporation

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference72 articles.

1. Amazon. 2009. Elastic cloud computing. http://aws.amazon.com/ec2/. Amazon. 2009. Elastic cloud computing. http://aws.amazon.com/ec2/.

2. FAWN

3. Anonymous. 2012. Space Invaders. The Economist. Anonymous. 2012. Space Invaders. The Economist.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An advanced hierarchical virtual resource management model in cloud data centers;AIP Conference Proceedings;2023

2. One Size Does Not Fit All: Quantifying and Exposing the Accuracy-Latency Trade-Off in Machine Learning Cloud Service APIs via Tolerance Tiers;2019 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS);2019-03

3. PANE;ACM Journal on Emerging Technologies in Computing Systems;2019-01-31

4. Effective Modeling Approach for IaaS Data Center Performance Analysis under Heterogeneous Workload;IEEE Transactions on Cloud Computing;2018-10-01

5. REOH: Using Probabilistic Network for Runtime Energy Optimization of Heterogeneous Systems;INT C PAR DISTRIB SY;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3