Abstract
This paper presents a generalization of the Naive Bayes Classifier. The method is specifically designed for binary classification problems commonly found in credit scoring and marketing applications. The Generalized Naive Bayes Classifier turns out to be a powerful tool for both exploratory and predictive analysis. It can generate accurate predictions through a flexible, non-parametric fitting procedure, while being able to uncover hidden patterns in the data. In this paper, the Generalized Naive Bayes Classifier and the original Bayes Classifier will be demonstrated. Also, important ties to logistic regression, the Generalized Additive Model (GAM), and Weight Of Evidence will be discussed.
Publisher
Association for Computing Machinery (ACM)
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献