Quality assessment of wikipedia articles: a deep learning approach by Quang Vinh Dang and Claudia-Lavinia Ignat with Martin Vesely as coordinator

Author:

Dang Quang Vinh1,Ignat Claudia-Lavinia1

Affiliation:

1. LORIA, Université de Lorraine / Inria / CNRS

Abstract

Wikipedia is indeed a very important knowledge sharing platform. However, since its start in 2001, the quality of Wikipedia is questioned because its content is created potentially by everyone who can access the Internet. Currently, the quality of Wikipedia articles is assessed by human judgement. The method is not scalable up to huge size and fast changing speed of Wikipedia today. An automatic quality classifier for Wikipedia articles is required to support user to choose high quality articles for reading and to notify authors for improving their products. While other existing approaches are based on manually predefined specific feature set, we present our approach of using deep learning to automatically represent Wikipedia articles for quality classification.

Publisher

Association for Computing Machinery (ACM)

Reference26 articles.

1. Adler B. T. Chatterjee K. De Alfaro L Faella M. Pye I. And Raman V. 2008. Assigning trust to wikipedia content. In Int. Sym. Wikis. ACM. 10.1145/1822258.1822293 Adler B. T. Chatterjee K. De Alfaro L Faella M. Pye I. And Raman V. 2008. Assigning trust to wikipedia content. In Int. Sym. Wikis. ACM. 10.1145/1822258.1822293

2. Anderka M. Stein B. And Lipka N. 2012. Predicting quality flaws in user-generated content: the case of wikipedia. In ) SIGR ACM 981--990. 10.1145/2348283.2348413 Anderka M. Stein B. And Lipka N. 2012. Predicting quality flaws in user-generated content: the case of wikipedia. In ) SIGR ACM 981--990. 10.1145/2348283.2348413

3. Blumenstock J. E. 2008. Size matters: word count as a measure of quality on wikipedia. In WWW.ACM 1095--1096. 10.1145/1367497.1367673 Blumenstock J. E. 2008. Size matters: word count as a measure of quality on wikipedia. In WWW.ACM 1095--1096. 10.1145/1367497.1367673

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Academic Resource Evaluation in Computer Science and Engineering through Automated Assessment;International Journal of Innovative Science and Research Technology (IJISRT);2023-12-23

2. Automatic Quality Assessment of Wikipedia Articles—A Systematic Literature Review;ACM Computing Surveys;2023-11-10

3. A simple model of edit activity in Wikipedia;Physica A: Statistical Mechanics and its Applications;2023-11

4. Citation Recommendation with Random Walking;Comprehensible Science;2021

5. Citation Classification Prediction Implying Text Features Using Natural Language Processing and Supervised Machine Learning Algorithms;Communications in Computer and Information Science;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3