Dynamic Matching and Allocation of Tasks

Author:

Ahuja Kartik1,Schaar Mihaela Van der1

Affiliation:

1. Electrical and Computer Engineering, UCLA, California, USA

Abstract

In many two-sided markets, the parties to be matched have incomplete information about their characteristics. We consider the settings where the parties engaged are extremely patient and are interested in long-term partnerships. Hence, once the final matches are determined, they persist for a long time. Each side has an opportunity to learn (some) relevant information about the other before final matches are made. For instance, clients seeking workers to perform tasks often conduct interviews that require the workers to perform some tasks and thereby provide information to both sides. The performance of a worker in such an interview- and hence the information revealed—depends both on the inherent characteristics of the worker and the task and also on the actions taken by the worker (e.g., the effort expended), which are not observed by the client. Thus, there is moral hazard. Our goal is to derive a dynamic matching mechanism that facilitates learning on both sides before final matches are achieved and ensures that the worker side does not have incentive to obscure learning of their characteristics through their actions. We derive such a mechanism that leads to final matching that achieves optimal performance (revenue) in equilibrium. We show that the equilibrium strategy is long-run coalitionally stable, which means there is no subset of workers and clients that can gain by deviating from the equilibrium strategy. We derive all the results under the modeling assumption that the utilities of the agents are defined as limit of means of the utility obtained in each interaction.

Funder

National Science Foundation

Office of Naval Research

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Mathematics,Marketing,Economics and Econometrics,Statistics and Probability,Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3