Why is the internet traffic bursty in short time scales?

Author:

Jiang Hao1,Dovrolis Constantinos1

Affiliation:

1. Georgia Tech

Abstract

Internet traffic exhibits multifaceted burstiness and correlation structure over a wide span of time scales. Previous work analyzed this structure in terms of heavy-tailed session characteristics, as well as TCP timeouts and congestion avoidance, in relatively long time scales. We focus on shorter scales, typically less than 100-1000 milliseconds. Our objective is to identify the actual mechanisms that are responsible for creating bursty traffic in those scales. We show that TCP self-clocking, joint with queueing in the network, can shape the packet interarrivals of a TCP connection in a two-level ON-OFF pattern. This structure creates strong correlations and burstiness in time scales that extend up to the Round-Trip Time (RTT) of the connection. This effect is more important for bulk transfers that have a large bandwidth-delay product relative to their window size. Also, the aggregation of many flows, without rescaling their packet interarrivals, does not converge to a Poisson stream, as one might expect from classical superposition results. Instead, the burstiness in those scales can be significantly reduced by TCP pacing. In particular, we focus on the importance of the minimum pacing timer, and show that a 10-millisecond timer would be too coarse for removing short-scale traffic burstiness, while a 1-millisecond timer would be sufficient to make the traffic almost as smooth as a Poisson stream in sub-RTT scales.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TITE: A transformer-based deep reinforcement learning approach for traffic engineering in hybrid SDN with dynamic traffic;Future Generation Computer Systems;2024-12

2. Markov decision processes with burstiness constraints;European Journal of Operational Research;2024-02

3. Optimized Cross-Path Attacks via Adversarial Reconnaissance;Proceedings of the ACM on Measurement and Analysis of Computing Systems;2023-12-07

4. Overlay Routing Over an Uncooperative Underlay;Proceedings of the Twenty-fourth International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing;2023-10-16

5. Micro-Burst Aware ECN in Multi-Queue Data Centers: Algorithm and Implementation;IEEE Transactions on Network Science and Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3