A Knowledge Graph Embedding Model for Answering Factoid Entity Questions

Author:

Jafarzadeh Parastoo1ORCID,Ensan Faezeh1ORCID,Ali Akbar Alavi Mahdiyar1ORCID,Zarrinkalam Fattane2ORCID

Affiliation:

1. Toronto Metropolitan University, Canada

2. University of Guelph, Canada

Abstract

Factoid entity questions (FEQ), which seek answers in the form of a single entity from knowledge sources such as DBpedia and Wikidata, constitute a substantial portion of user queries in search engines. This paper introduces the Knowledge Graph Embedding model for Factoid Entity Question answering (KGE-FEQ). Leveraging a textual knowledge graph derived from extensive text collections, KGE-FEQ encodes textual relationships between entities. The model employs a two-step process: (1) Triple Retrieval, where relevant triples are retrieved from the textual knowledge graph based on semantic similarities to the question, and (2) Answer Selection, where a knowledge graph embedding approach is utilized for answering the question. This involves positioning the embedding for the answer entity close to the embedding of the question entity, incorporating a vector representing the question and textual relations between entities. Extensive experiments evaluate the performance of the proposed approach, comparing KGE-FEQ to state-of-the-art baselines in factoid entity question answering and the most advanced open-domain question answering techniques applied to FEQs. The results show that KGE-FEQ outperforms existing methods across different datasets. Ablation studies highlights the effectiveness of KGE-FEQ when both the question and textual relations between entities are considered for answering questions.

Publisher

Association for Computing Machinery (ACM)

Reference77 articles.

1. BeamQA: Multi-hop Knowledge Graph Question Answering with Sequence-to-Sequence Prediction and Beam Search

2. Yang Bai, Anthony Colas, and Daisy Zhe Wang. 2023. MythQA: Query-Based Large-Scale Check-Worthy Claim Detection through Multi-Answer Open-Domain Question Answering. In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. 3017–3026.

3. Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. 2013. Semantic parsing on freebase from question-answer pairs. In Proceedings of the 2013 conference on empirical methods in natural language processing. 1533–1544.

4. Boosting question answering over knowledge graph with reward integration and policy evaluation under weak supervision

5. Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko. 2013. Translating embeddings for modeling multi-relational data. Advances in neural information processing systems 26 (2013).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3