Measuring Membership Privacy on Aggregate Location Time-Series
Author:
Affiliation:
1. École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
2. University College London (UCL) & Alan Turing Institute, London, United Kingdom
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3393691.3394200
Reference16 articles.
1. Luca Canzian and Mirco Musolesi. 2015. Trajectories of depression: unobtrusive monitoring of depressive states by means of smartphone mobility traces analysis. In Ubicomp. Luca Canzian and Mirco Musolesi. 2015. Trajectories of depression: unobtrusive monitoring of depressive states by means of smartphone mobility traces analysis. In Ubicomp.
2. Cynthia Dwork Moni Naor Toniann Pitassi and Guy N Rothblum. 2010. Differential privacy under continual observation. In STOC. Cynthia Dwork Moni Naor Toniann Pitassi and Guy N Rothblum. 2010. Differential privacy under continual observation. In STOC.
3. Philippe Golle and Kurt Partridge. 2009. On the Anonymity of Home/Work Location Pairs. In Pervasive Computing. Philippe Golle and Kurt Partridge. 2009. On the Anonymity of Home/Work Location Pairs. In Pervasive Computing.
4. Nils Homer Szabolcs Szelinger Margot Redman David Duggan Waibhav Tembe Jill Muehling John V Pearson Dietrich A Stephan Stanley F Nelson and David W Craig. 2008. Resolving individuals contributing trace amounts of DNA to highly complex mixtures using high-density SNP genotyping microarrays. PLoS Genetics (2008). Nils Homer Szabolcs Szelinger Margot Redman David Duggan Waibhav Tembe Jill Muehling John V Pearson Dietrich A Stephan Stanley F Nelson and David W Craig. 2008. Resolving individuals contributing trace amounts of DNA to highly complex mixtures using high-density SNP genotyping microarrays. PLoS Genetics (2008).
5. Bargav Jayaraman and David Evans. 2019. Evaluating Differentially Private Machine Learning in Practice. In USENIX Security. Bargav Jayaraman and David Evans. 2019. Evaluating Differentially Private Machine Learning in Practice. In USENIX Security.
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Differentially private multivariate time series forecasting of aggregated human mobility with deep learning: Input or gradient perturbation?;Neural Computing and Applications;2022-06-03
2. Privacy-Preserving Aggregate Mobility Data Release: An Information-Theoretic Deep Reinforcement Learning Approach;IEEE Transactions on Information Forensics and Security;2022
3. Measuring Membership Privacy on Aggregate Location Time-Series;ACM SIGMETRICS Performance Evaluation Review;2020-07-08
4. Measuring Membership Privacy on Aggregate Location Time-Series;Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems;2020-06-08
5. Tecnologias de perfilamento e dados agregados de geolocalização no combate à COVID-19 no Brasil: uma análise dos riscos individuais e coletivos à luz da LGPD (Profiling Technologies and Aggregated Geolocation Data in the Fight against COVID-19 in Brazil: An Analysis of Individual and Collective Risks in the Light of the LGPD);SSRN Electronic Journal;2020
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3