Reconciling exhaustive pattern matching with objects

Author:

Isradisaikul Chinawat1,Myers Andrew C.1

Affiliation:

1. Cornell University, Ithaca, NY, USA

Abstract

Pattern matching, an important feature of functional languages, is in conflict with data abstraction and extensibility, which are central to object-oriented languages. Modal abstraction offers an integration of deep pattern matching and convenient iteration abstractions into an object-oriented setting; however, because of data abstraction, it is challenging for a compiler to statically verify properties such as exhaustiveness. In this work, we extend modal abstraction in the JMatch language to support static, modular reasoning about exhaustiveness and redundancy. New matching specifications allow these properties to be checked using an SMT solver. We also introduce expressive pattern-matching constructs. Our evaluation shows that these new features enable more concise code and that the performance of checking exhaustiveness and redundancy is acceptable.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference31 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Persimmon: Nested Family Polymorphism with Extensible Variant Types;Proceedings of the ACM on Programming Languages;2024-04-29

2. Dynamic pattern matching with Python;Proceedings of the 16th ACM SIGPLAN International Symposium on Dynamic Languages;2020-11-15

3. Truly abstract interfaces for algebraic data types: the extractor typing problem;Proceedings of the 9th ACM SIGPLAN International Symposium on Scala;2018-09-17

4. Verifying Fail-Free Declarative Programs;Proceedings of the 20th International Symposium on Principles and Practice of Declarative Programming;2018-09-03

5. A Practical Study of Control in Objected-Oriented–Functional–Logic Programming with Paisley;Electronic Proceedings in Theoretical Computer Science;2017-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3