Diagramming information structures using 3D perceptual primitives

Author:

Irani Pourang1,Ware Colin2

Affiliation:

1. University of New Brunswick, Winnipeg, Manitoba, Canada

2. University of New Hampshire

Abstract

The class of diagrams known collectively as node-link diagrams are used extensively for many applications, including planning, communications networks, and computer software. The defining features of these diagrams are nodes, represented by a circle or rectangle connected by links usually represented by some form of line or arrow. We investigate the proposition that drawing three-dimensional shaded elements instead of using simple lines and outlines will result in diagrams that are easier to interpret. A set of guidelines for such diagrams is derived from perception theory and these collectively define the concept of the geon diagram. We also introduce a new substructure identification task for evaluating diagrams and use it to test the effectiveness of geon diagrams. The results from five experiments are reported. In the first three experiments geon diagrams are compared to Unified Modeling Language (UML) diagrams. The results show that substructures can be identified in geon diagrams with approximately half the errors and significantly faster. The results also show that geon diagrams can be recalled much more reliably than structurally equivalent UML diagrams. In the final two experiments geon diagrams are compared with diagrams having the same outline but not constructed with shaded solids. This is designed to specifically test the importance of using 3D shaded primitives. The results also show that substructures can be identified much more accurately with shaded components than with 2D outline equivalents and remembered more reliably. Implications for the design of diagrams are discussed.

Publisher

Association for Computing Machinery (ACM)

Subject

Human-Computer Interaction

Reference30 articles.

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Windows into spatial cognition: Mechanisms by which gesture‐based instruction improve anatomy learning;Anatomical Sciences Education;2024-02-13

2. Path Tracing in 2D, 3D, and Physicalized Networks;IEEE Transactions on Visualization and Computer Graphics;2023

3. Human-Centric Co-Design of Model-Based System Architecture;Procedia CIRP;2023

4. Mining human factors general trends from +100k UML class diagrams;Proceedings of the 25th International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings;2022-10-23

5. UML-based Live Programming Environment in Virtual Reality;2022 Working Conference on Software Visualization (VISSOFT);2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3