mmASL

Author:

Santhalingam Panneer Selvam1,Hosain Al Amin1,Zhang Ding1,Pathak Parth1,Rangwala Huzefa1,Kushalnagar Raja2

Affiliation:

1. Computer Science Department, George Mason University, Fairfax, Virginia

2. Department of Science, Technology and Mathematics, Gallaudet University, Washington, DC

Abstract

Home assistant devices such as Amazon Echo and Google Home have become tremendously popular in the last couple of years. However, due to their voice-controlled functionality, these devices are not accessible to Deaf and Hard-of-Hearing (DHH) people. Given that over half a million people in the United States communicate using American Sign Language (ASL), there is a need of a home assistant system that can recognize ASL. The objective of this work is to design a home assistant system for DHH users (referred to as mmASL) that can perform ASL recognition using 60 GHz millimeter-wave wireless signals. mmASL has two important components. First, it can perform reliable wake-word detection using spatial spectrograms. Second, using a scalable and extensible multi-task deep learning model, mmASL can learn the phonological properties of ASL signs and use them to accurately recognize the ASL signs. We implement mmASL on 60 GHz software radio platform with phased array, and evaluate it using a large-scale data collection from 15 signers, 50 ASL signs and over 12K sign instances. We show that mmASL is tolerant to the presence of other interfering users and their activities, change of environment and different user positions. We compare mmASL with a well-studied Kinect and RGB camera based ASL recognition systems, and find that it can achieve a comparable performance (87% average accuracy of sign recognition), validating the feasibility of using 60 GHz mmWave system for ASL sign recognition.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Reference107 articles.

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing the Applicability of Sign Language Translation;IEEE Transactions on Mobile Computing;2024-09

2. Surveying neuro-symbolic approaches for reliable artificial intelligence of things;Journal of Reliable Intelligent Environments;2024-07-26

3. GesturePrint: Enabling User Identification for mmWave-Based Gesture Recognition Systems;2024 IEEE 44th International Conference on Distributed Computing Systems (ICDCS);2024-07-23

4. Computer Interactive Gesture Recognition Model Based on Improved YOLOv5 Algorithm;International Journal of Computational Intelligence Systems;2024-05-28

5. Talk2Radar: Talking to mmWave Radars via Smartphone Speaker;IEEE INFOCOM 2024 - IEEE Conference on Computer Communications;2024-05-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3