Toward Assessing and Recommending Combinations of Behaviors for Improving Health and Well-Being

Author:

Nosakhare Ehimwenma1,Picard Rosalind2

Affiliation:

1. Massachusetts Institute of Technology, Cambridge, MA

2. MIT Media Lab, Cambridge, MA

Abstract

Multiple behaviors typically work together to influence health, making it hard to understand how one behavior might compensate for another. Rich multi-modal datasets from mobile sensors and advances in machine learning are today enabling new kinds of associations to be made between combinations of behaviors objectively assessed from daily life and self-reported levels of stress, mood, and health. In this article, we present a framework to (1) map multi-modal messy data collected in the “wild” to meaningful feature representations of health-related behaviors, (2) uncover latent patterns comprising combinations of behaviors that best predict health and well-being, and (3) use these learned patterns to make evidence-based recommendations that may improve health and well-being. We show how to use supervised latent Dirichlet allocation to model the observed behaviors, and we apply variational inference to uncover the latent patterns. Implementing and evaluating the model on 5,397 days of data from a group of 244 college students, we find that these latent patterns are indeed predictive of daily self-reported levels of stressed-calm, sad-happy, and sick-healthy states. We investigate the patterns of modifiable behaviors present on different days and uncover several ways in which they relate to stress, mood, and health. This work contributes a new method using objective data analysis to help advance understanding of how combinations of modifiable human behaviors may promote human health and well-being.

Funder

National Institutes of Health

Publisher

Association for Computing Machinery (ACM)

Reference31 articles.

1. Representation Learning: A Review and New Perspectives

2. Mobile peer support in diabetes;Chomutare Taridzo;Studies in Health Technology and Informatics,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3