Affiliation:
1. University of Sao Paulo (USP) at Sao Carlos, Brazil
Abstract
Twitter is a microblogging platform in which users can post status messages, called “tweets,” to their friends. It has provided an enormous dataset of the so-called sentiments, whose classification can take place through supervised learning. To build supervised learning models, classification algorithms require a set of representative labeled data. However, labeled data are usually difficult and expensive to obtain, which motivates the interest in semi-supervised learning. This type of learning uses unlabeled data to complement the information provided by the labeled data in the training process; therefore, it is particularly useful in applications including tweet sentiment analysis, where a huge quantity of unlabeled data is accessible. Semi-supervised learning for tweet sentiment analysis, although appealing, is relatively new. We provide a comprehensive survey of semi-supervised approaches applied to tweet classification. Such approaches consist of graph-based, wrapper-based, and topic-based methods. A comparative study of algorithms based on self-training, co-training, topic modeling, and distant supervision highlights their biases and sheds light on aspects that the practitioner should consider in real-world applications.
Funder
CNPq
Brazilian Research Agencies Capes
FAPESP
Publisher
Association for Computing Machinery (ACM)
Subject
General Computer Science,Theoretical Computer Science
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献