Affiliation:
1. ZIAT DACC Laboratory, Zhuhai Institutes of Advanced Technology of the Chinese Academy of Sciences, Zhuhai, China
2. Faculty of management and economics, Kunming University of Science and Technology, Kunming, Yunnan Province, China
Abstract
Numerous supply-chain combines with internet of things (IoT) applications have been proposed, and many methods and algorithms enhance the convenience of supply chains. However, new businesses still find it challenging to enter a supply chain, because unauthorised IoT devices of different companies illegally access resources. As security is paramount in a supply chain, IoT management has become very difficult. Public resources allocation and waste management also pose a problem. To solve the above problems, we proposed a new IoT management framework that embraces blockchain technology to help companies to form a supply chain effectively. This framework consists of an access control system, a backup peer mechanism and an internal data isolation and transmission approach. The access control system has a registrar module and an inspection module. The registrar module is mainly responsible for information registration with a registration policy, which has to be followed by all the companies in the supply chain. Besides, it provides a revocation and updating function. The inspection module focuses on judging misbehaviour and monitors the actions of the subjects; when any misoperation occurs, the system will correspondingly penalise violators. So that all related actions and information are verified and stored into blockchain, the IoT access control and safety of IoT admission are enhanced. Furthermore, in a blockchain system, if one single peer in the network breaks down, then the whole system may stop, because consensus cannot be reached. The data of the broken peer may be lost if it does not commit yet. The backup peer mechanism allows the primary peer and the backup peer to connect to an inspecting server for acquiring real-time data. The internal data isolation and transmission modules transmit and stores private data without creating a new subchannel. The proposed method is taken full account of the stability of the network and the fault tolerance to guarantee the robust of the system. To obtain unbiases results, experiments are conducted in two different blockchain environment. The results show our proposed method are promising IoT blockchain system for the supply chain.
Funder
RDAO/FST, University of Macau and Macau SAR government
“A Scalable Data Stream Mining Methodology: Stream-based Holistic Analytics and Reasoning in Parallel,”
FDCT of Macau SAR government
“Nature-Inspired Computing and Metaheuristics Algorithms for Optimizing Data Mining Performance,”
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献