Space-Time Drift Point Detection in Mobility Patterns

Author:

Souza Roberto C. S. N. P.1,Oliveira Derick M.1,Brito Denise E. F. de1,Assunção Renato M.1,Jr. Wagner Meira1

Affiliation:

1. Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte - MG

Abstract

Location-aware information is now commonplace, as the ubiquity and pervasiveness of technology enabled its generation and storage at large scale. These data constitute a rich representation of entities’ whereabouts and behavior as they move on the map. Although several studies reported considerable predictability of such mobility patterns, several factors may impose significant changes on moving behavior. Being able to detect these changes can benefit several applications. In this article, we formalize and address the problem of detecting mobility drifts in mobility patterns. This problem is particularly challenging due to the noisy and incomplete nature of the data. We design non-parametric tests and present two algorithms to detect mobility drifts when the putative drift point is known in advance and there is no previous knowledge about the existence of potential changes, and we need to search for the most likely drift point rigorously. To evaluate our algorithms, we perform an extensive experimental study with real-world data coming from a variety of scenarios, such as geo-tagged social media data and GPS traces of connected vehicles. The results show the effectiveness of our algorithms, being able to identify existing drift points on spatial mobility patterns correctly.

Funder

InWeb

FAPEMIG, CNPq, and CAPES

EUBra-BIGSEA

MASWeb

ATMOSPHERE

Google Research Awards for Latin America program

INCT-Cyber

Publisher

Association for Computing Machinery (ACM)

Subject

Discrete Mathematics and Combinatorics,Geometry and Topology,Computer Science Applications,Modeling and Simulation,Information Systems,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3