Sparcl: a language for partially-invertible computation

Author:

Matsuda Kazutaka1,Wang Meng2

Affiliation:

1. Tohoku University, Japan

2. University of Bristol, UK

Abstract

Invertibility is a fundamental concept in computer science, with various manifestations in software development (serializer/deserializer, parser/printer, redo/undo, compressor/decompressor, and so on). Full invertibility necessarily requires bijectivity, but the direct approach of composing bijective functions to develop invertible programs is too restrictive to be useful. In this paper, we take a different approach by focusing on partially-invertible functions—functions that become invertible if some of their arguments are fixed. The simplest example of such is addition, which becomes invertible when fixing one of the operands. More involved examples include entropy-based compression methods (e.g., Huffman coding), which carry the occurrence frequency of input symbols (in certain formats such as Huffman tree), and fixing this frequency information makes the compression methods invertible. We develop a language Sparcl for programming such functions in a natural way, where partial-invertibility is the norm and bijectivity is a special case, hence gaining significant expressiveness without compromising correctness. The challenge in designing such a language is to allow ordinary programming (the “partially” part) to interact with the invertible part freely, and yet guarantee invertibility by construction. The language Sparcl is linear-typed, and has a type constructor to distinguish data that are subject to invertible computation and those that are not. We present the syntax, type system, and semantics of the language, and prove that Sparcl correctly guarantees invertibility for its programs. We demonstrate the expressiveness of Sparcl with examples including tree rebuilding from preorder and inorder traversals and Huffman coding.

Funder

Engineering and Physical Sciences Research Council

Kayamori Foundation of Informational Science Advancement

Japan Society for the Promotion of Science

Royal Society

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Synbit: synthesizing bidirectional programs using unidirectional sketches;Formal Methods in System Design;2024-01-29

2. Sparcl: A language for partially invertible computation;Journal of Functional Programming;2024

3. Embedding by Unembedding;Proceedings of the ACM on Programming Languages;2023-08-30

4. Reversible computing from a programming language perspective;Theoretical Computer Science;2023-04

5. Contract lenses: Reasoning about bidirectional programs via calculation;Journal of Functional Programming;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3