Eddies

Author:

Avnur Ron1,Hellerstein Joseph M.1

Affiliation:

1. University of California, Berkeley

Abstract

In large federated and shared-nothing databases, resources can exhibit widely fluctuating characteristics. Assumptions made at the time a query is submitted will rarely hold throughout the duration of query processing. As a result, traditional static query optimization and execution techniques are ineffective in these environments. In this paper we introduce a query processing mechanism called an eddy , which continuously reorders operators in a query plan as it runs. We characterize the moments of symmetry during which pipelined joins can be easily reordered, and the synchronization barriers that require inputs from different sources to be coordinated. By combining eddies with appropriate join algorithms, we merge the optimization and execution phases of query processing, allowing each tuple to have a flexible ordering of the query operators. This flexibility is controlled by a combination of fluid dynamics and a simple learning algorithm. Our initial implementation demonstrates promising results, with eddies performing nearly as well as a static optimizer/executor in static scenarios, and providing dramatic improvements in dynamic execution environments.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Cited by 187 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Anser: Adaptive Information Sharing Framework of AnalyticDB;Proceedings of the VLDB Endowment;2023-08

2. ADOPT: Adaptively Optimizing Attribute Orders for Worst-Case Optimal Join Algorithms via Reinforcement Learning;Proceedings of the VLDB Endowment;2023-07

3. AMULET: Adaptive Matrix-Multiplication-Like Tasks;Proceedings of the 19th International Workshop on Data Management on New Hardware;2023-06-18

4. Exploiting Access Pattern Characteristics for Join Reordering;Proceedings of the 19th International Workshop on Data Management on New Hardware;2023-06-18

5. BumbleBee: Application-aware adaptation for edge-cloud orchestration;2022 IEEE/ACM 7th Symposium on Edge Computing (SEC);2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3