Deconfounded Cross-modal Matching for Content-based Micro-video Background Music Recommendation

Author:

Yi Jing1ORCID,Chen Zhenzhong1ORCID

Affiliation:

1. Wuhan University, Wuhan, China

Abstract

Object-oriented micro-video background music recommendation is a complicated task where the matching degree between videos and background music is a major issue. However, music selections in user-generated content (UGC) are prone to selection bias caused by historical preferences of uploaders. Since historical preferences are not fully reliable and may reflect obsolete behaviors, over-reliance on them should be avoided as knowledge and interests dynamically evolve. In this article, we propose a Deconfounded Cross-Modal matching model to mitigate such bias. Specifically, uploaders’ personal preferences of music genres are identified as confounders that spuriously correlate music embeddings and background music selections, causing the learned system to over-recommend music from majority groups. To resolve such confounders, backdoor adjustment is utilized to deconfound the spurious correlation between music embeddings and prediction scores. We further utilize Monte Carlo estimator with batch-level average as the approximations to avoid integrating the entire confounder space calculated by the adjustment. Furthermore, we design a teacher–student network to utilize the matching of music videos, which is professionally generated content (PGC) with specialized matching, to better recommend content-matching background music. The PGC data are modeled by a teacher network to guide the matching of uploader-selected UGC data of student network by Kullback–Leibler–based knowledge transfer. Extensive experiments on the TT-150k-genre dataset demonstrate the effectiveness of the proposed method. The code is publicly available on https://github.com/jing-1/DecCM

Funder

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Reference59 articles.

1. Some new estimates of the ‘Jensen gap’;Abramovich Shoshana;J. Inequal. Appl.,2016

2. YouTube-8M: A large-scale video classification benchmark;Abu-El-Haija Sami;arXiv:1609.08675,2016

3. Beyond Relevance

4. Alex Beutel, Jilin Chen, Tulsee Doshi, Hai Qian, Li Wei, Yi Wu, Lukasz Heldt, Zhe Zhao, Lichan Hong, Ed H. Chi, et al. 2019. Fairness in recommendation ranking through pairwise comparisons. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2212–2220.

5. Jiansong Chao HaofenWang Wenlei Zhou Weinan Zhang and Yong Yu. 2011. Tunesensor: A semantic-driven music recommendation service for digital photo albums. In Proceedings of the International Semantic Web Conference. 353–361.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3