A Game Theoretic Model for the Formation of Navigable Small-World Networks—The Tradeoff between Distance and Reciprocity

Author:

Yang Zhi1,Chen Wei2

Affiliation:

1. Peking University, Beijing, P.R. China

2. Microsoft Research, Haidian District Beijing, China

Abstract

Kleinberg proposed a family of small-world networks to explain the navigability of large-scale real-world social networks. However, the underlying mechanism that drives real networks to be navigable is not yet well understood. In this article, we present a game theoretic model for the formation of navigable small-world networks. We model the network formation as a game called the Distance-Reciprocity Balanced (DRB) game in which people seek for both high reciprocity and long-distance relationships. We show that the game has only two Nash equilibria: One is the navigable small-world network, and the other is the random network in which each node connects with each other node with equal probability, and any other network state can reach the navigable small world via a sequence of best-response moves of nodes. We further show that the navigable small-world equilibrium is very stable—(a) no collusion of any size would benefit from deviating from it; and (b) after an arbitrary deviations of a large random set of nodes, the network would return to the navigable small world as soon as every node takes one best-response step. In contrast, for the random network, a small group collusion or random perturbations is guaranteed to bring the network out of the random-network equilibrium and move to the navigable network as soon as every node takes one best-response step. Moreover, we show that navigable small-world equilibrium has much better social welfare than the random network, and we provide the price-of-anarchy and price-of-stability results of the game. Our empirical evaluation further demonstrates that the system always converges to the navigable network even when limited or no information about other players’ strategies is available, and the DRB game simulated on real-world networks leads to navigability characteristic that is very close to that of the real networks, even though the real-world networks have non-uniform population distributions different from Kleinberg’s small-world model. Our theoretical and empirical analyses provide important new insight on the connection between distance, reciprocity, and navigability in social networks.

Funder

National Basic Research Program of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference37 articles.

1. Lada Adamic and Eytan Adar. 2005. How to search a social network. Social Netw. 27 (2005). Lada Adamic and Eytan Adar. 2005. How to search a social network. Social Netw. 27 (2005).

2. The International Trade Network: weighted network analysis and modelling

3. Navigability of complex networks

4. Networks Become Navigable as Nodes Move and Forget

5. On the Hyperbolicity of Small-World and Treelike Random Graphs

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3