CreST: A Credible Spatiotemporal Learning Framework for Uncertainty-aware Traffic Forecasting

Author:

Zhou Zhengyang1ORCID,Shi Jiahao2ORCID,Zhang Hongbo2ORCID,Chen Qiongyu2ORCID,Wang Xu2ORCID,Chen Hongyang3ORCID,Wang Yang2ORCID

Affiliation:

1. University of Science and Technology of China (USTC) & Suzhou Institute for Advanced Research, USTC, Hefei, China

2. University of Science And Technology of China, Hefei, China

3. Zhejiang Lab, Hangzhou, China

Funder

Key Research Project of Zhejiang Lab

National Natural Science Foundation of China

Academic Leaders Cultivation Program, USTC

Project of Stable Support for Youth Team in Basic Research Field, CAS

National Key Research and Development Program of China

Publisher

ACM

Reference43 articles.

1. T. Li, J. Zhang, K. Bao, Y. Liang, Y. Li, and Y. Zheng, "Autost: Efficient neural architecture search for spatio-temporal prediction," in Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020, pp. 794--802.

2. J. Liu, L. Deng, H. Miao, Y. Zhao, and K. Zheng, "Task assignment with federated preference learning in spatial crowdsourcing," in Proceedings of the 31st ACM International Conference on Information & Knowledge Management, 2022, pp. 1279--1288.

3. L. Bai, L. Yao, S. S. Kanhere, X.Wang, and Q. Z. Sheng, "Stg2seq: spatial-temporal graph to sequence model for multi-step passenger demand forecasting," in 28th International Joint Conference on Artificial Intelligence, IJCAI 2019. International Joint Conferences on Artificial Intelligence, 2019, pp. 1981--1987.

4. L. Han, B. Du, L. Sun, Y. Fu, Y. Lv, and H. Xiong, "Dynamic and multi-faceted spatio-temporal deep learning for traffic speed forecasting," in Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021, pp. 547--555.

5. L. Bai, L. Yao, C. Li, X. Wang, and C. Wang, "Adaptive graph convolutional recurrent network for traffic forecasting," Advances in Neural Information Processing Systems, vol. 33, 2020.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spatial-Temporal Large Language Model for Traffic Prediction;2024 25th IEEE International Conference on Mobile Data Management (MDM);2024-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3