Arabic Authorship Attribution

Author:

Altakrori Malik H.1,Iqbal Farkhund2,Fung Benjamin C. M.3ORCID,Ding Steven H. H.3,Tubaishat Abdallah2

Affiliation:

1. School of Computer Science, McGill University, QC, Canada

2. College of Technological Innovation, Zayed University, Abu Dhabi, United Arab Emirates

3. School of Information Studies, McGill University, QC, Canada

Abstract

Law enforcement faces problems in tracing the true identity of offenders in cybercrime investigations. Most offenders mask their true identity, impersonate people of high authority, or use identity deception and obfuscation tactics to avoid detection and traceability. To address the problem of anonymity, authorship analysis is used to identify individuals by their writing styles without knowing their actual identities. Most authorship studies are dedicated to English due to its widespread use over the Internet, but recent cyber-attacks such as the distribution of Stuxnet indicate that Internet crimes are not limited to a certain community, language, culture, ideology, or ethnicity. To effectively investigate cybercrime and to address the problem of anonymity in online communication, there is a pressing need to study authorship analysis of languages such as Arabic, Chinese, Turkish, and so on. Arabic, the focus of this study, is the fourth most widely used language on the Internet. This study investigates authorship of Arabic discourse/text, especially tiny text, Twitter posts. We benchmark the performance of a profile-based approach that uses n -grams as features and compare it with state-of-the-art instance-based classification techniques. Then we adapt an event-visualization tool that is developed for English to accommodate both Arabic and English languages and visualize the result of the attribution evidence. In addition, we investigate the relative effect of the training set, the length of tweets, and the number of authors on authorship classification accuracy. Finally, we show that diacritics have an insignificant effect on the attribution process and part-of-speech tags are less effective than character-level and word-level n -grams.

Funder

Canada Research Chairs (CRC) Program

Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grants

Zayed University Research Incentive Fund

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integrating Bidirectional Long Short-Term Memory with Subword Embedding for Authorship Attribution;2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC);2023-10-01

2. A Transformer-Based Approach to Authorship Attribution in Classical Arabic Texts;Applied Sciences;2023-06-18

3. Survey of Authorship Identification Tasks on Arabic Texts;ACM Transactions on Asian and Low-Resource Language Information Processing;2023-04-12

4. Post-Authorship Attribution Using Regularized Deep Neural Network;Applied Sciences;2022-07-26

5. UrduAI: Writeprints for Urdu Authorship Identification;ACM Transactions on Asian and Low-Resource Language Information Processing;2022-03-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3