An analysis of the Burrows—Wheeler transform

Author:

Manzini Giovanni1

Affiliation:

1. Univ. del Piemonte Orientale, Alessandria, Italy

Abstract

The Burrows—Wheeler Transform (also known as Block-Sorting) is at the base of compression algorithms that are the state of the art in lossless data compression. In this paper, we analyze two algorithms that use this technique. The first one is the original algorithm described by Burrows and Wheeler, which, despite its simplicity outperforms the Gzip compressor. The second one uses an additional run-length encoding step to improve compression. We prove that the compression ratio of both algorithms can be bounded in terms of the k th order empirical entropy of the input string for any k ≥ 0. We make no assumptions on the input and we obtain bounds which hold in the worst case that is for every possible input string. All previous results for Block-Sorting algorithms were concerned with the average compression ratio and have been established assuming that the input comes from a finite-order Markov source.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Reference25 articles.

1. ARNOLD R. AND BELL T. 2000. The Canterbury corpus home page. http://corpus.canterbury. ac.nz. ARNOLD R. AND BELL T. 2000. The Canterbury corpus home page. http://corpus.canterbury. ac.nz.

2. A locally adaptive data compression scheme

3. Unbounded length contexts for PPM;CLEARY J.G.;Comput. J.,1997

4. Data Compression Using Dynamic Markov Modelling

Cited by 229 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3