Binary Sketches for Secondary Filtering

Author:

Mic Vladimir1,Novak David1,Zezula Pavel1

Affiliation:

1. Masaryk University, Brno, Czech Republic

Abstract

This article addresses the problem of matching the most similar data objects to a given query object. We adopt a generic model of similarity that involves the domain of objects and metric distance functions only. We examine the case of a large dataset in a complex data space, which makes this problem inherently difficult. Many indexing and searching approaches have been proposed, but they have often failed to efficiently prune complex search spaces and access large portions of the dataset when evaluating queries. We propose an approach to enhancing the existing search techniques to significantly reduce the number of accessed data objects while preserving the quality of the search results. In particular, we extend each data object with its sketch , a short binary string in Hamming space. These sketches approximate the similarity relationships in the original search space, and we use them to filter out non-relevant objects not pruned by the original search technique. We provide a probabilistic model to tune the parameters of the sketch-based filtering separately for each query object. Experiments conducted with different similarity search techniques and real-life datasets demonstrate that the secondary filtering can speed-up similarity search several times.

Funder

Czech Republic Project

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Filtering with relational similarity;Information Systems;2024-05

2. CRANBERRY: Memory-Effective Search in 100M High-Dimensional CLIP Vectors;Similarity Search and Applications;2023

3. Concept of Relational Similarity Search;Similarity Search and Applications;2022

4. Learned Metric Index — Proposition of learned indexing for unstructured data;Information Systems;2021-09

5. Efficient Indexing of 3D Human Motions;Proceedings of the 2021 International Conference on Multimedia Retrieval;2021-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3