Fairness of Interaction in Ranking under Position, Selection, and Trust Bias

Author:

Ovaisi Zohreh1,Saadatpanah Parsa2,Sefati Shahin3,Ohannessian Mesrob1,Zheleva Elena1

Affiliation:

1. University of Illinois Chicago, Chicago, USA

2. Meta Inc, Washington DC, USA

3. Meta Inc, New York, USA

Abstract

Ranking algorithms in online platforms serve not only users on the demand side, but also items on the supply side. While ranking has traditionally presented items in an order that maximizes their utility to users, the uneven interactions that different items receive as a result of such a ranking can pose item fairness concerns. Moreover, interaction is affected by various forms of bias, two of which have received considerable attention: position bias and selection bias. Position bias occurs due to lower likelihood of observation for items in lower ranked positions. Selection bias occurs because interaction is not possible with items below an arbitrary cutoff position chosen by the front-end application at deployment time (i.e., showing only the top- k items). A less studied, third form of bias, trust bias, is equally important, as it makes interaction dependent on rank even after observation, by influencing the item’s perceived relevance. To capture interaction disparity in the presence of all three biases, in this paper we introduce a flexible fairness metric. Using this metric, we develop a post-processing algorithm that optimizes fairness in ranking through greedy exploration and allows a tradeoff between fairness and utility. Our algorithm outperforms state-of-the-art fair ranking algorithms on several datasets.

Publisher

Association for Computing Machinery (ACM)

Reference49 articles.

1. [n. d.]. Epinion dataset. https://www.shopping.com/.

2. [n. d.]. MovieLens dataset. https://movielens.org/.

3. Aman Agarwal, Xuanhui Wang, Cheng Li, Michael Bendersky, and Marc Najork. 2019. Addressing trust bias for unbiased learning-to-rank. In Proceedings of The Web Conference.

4. Unbiased Learning to Rank with Unbiased Propensity Estimation

5. Kinjal Basu Cyrus DiCiccio Heloise Logan and Noureddine El Karoui. 2020. A Framework for Fairness in Two-Sided Marketplaces. arXiv preprint arXiv:2006.12756(2020).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3