Intelligent Process Adaptation in the SmartPM System

Author:

Marrella Andrea1,Mecella Massimo1ORCID,Sardina Sebastian2

Affiliation:

1. Sapienza Università di Roma, Roma, Italy

2. RMIT University, Victoria, Australia

Abstract

The increasing application of process-oriented approaches in new challenging dynamic domains beyond business computing (e.g., healthcare, emergency management, factories of the future, home automation, etc.) has led to reconsider the level of flexibility and support required to manage complex knowledge-intensive processes in such domains. A knowledge-intensive process is influenced by user decision making and coupled with contextual data and knowledge production, and involves performing complex tasks in the “physical” real world to achieve a common goal. The physical world, however, is not entirely predictable, and knowledge-intensive processes must be robust to unexpected conditions and adaptable to unanticipated exceptions, recognizing that in real-world environments it is not adequate to assume that all possible recovery activities can be predefined for dealing with the exceptions that can ensue. To tackle this issue, in this paper we present SmartPM, a model and a prototype Process Management System featuring a set of techniques providing support for automated adaptation of knowledge-intensive processes at runtime. Such techniques are able to automatically adapt process instances when unanticipated exceptions occur, without explicitly defining policies to recover from exceptions and without the intervention of domain experts at runtime, aiming at reducing error-prone and costly manual ad-hoc changes, and thus at relieving users from complex adaptations tasks. To accomplish this, we make use of well-established techniques and frameworks from Artificial Intelligence, such as situation calculus, IndiGolog and classical planning. The approach, which is backed by a formal model, has been implemented and validated with a case study based on real knowledge-intensive processes coming from an emergency management domain.

Funder

Italian Sapienza grant SUPER

Italian Sapienza grant TESTMED

Sapienza 2014 Visiting Grant

Italian Sapienza award SPIRITLETS

Italian project RoMA - Resilence of Metropolitan Areas

Italian project Social Museum e Smart Tourism

Italian project NEPTIS

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Reference89 articles.

1. Synthy: A system for end to end composition of web services

2. Automatic Composition of E-services That Export Their Behavior

3. BPMI.org and OMG. 2011. Business Process Modeling Notation - Final Specification Ver.2.0. Retrieved from http://www.omg.org/spec/BPMN/2.0/PDF/. BPMI.org and OMG. 2011. Business Process Modeling Notation - Final Specification Ver.2.0. Retrieved from http://www.omg.org/spec/BPMN/2.0/PDF/.

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3