1. B. Amos, L. Xu, and J. Z. Kolter. Input Convex Neural Networks. In International Conference on Machine Learning, pages 146--155, 2017.
2. L. Ardizzone, J. Kruse, S. Wirkert, D. Rahner, E. W. Pellegrini, R. S. Klessen, L. Maier-Hein, C. Rother, and U. Köthe. Analyzing inverse problems with invertible neural networks. arXiv preprint arXiv:1808.04730, 2018.
3. Solving inverse problems using data-driven models
4. G. Bal. Introduction to inverse problems. Lecture Notes-Department of Applied Physics and Applied Mathematics, Columbia University, New York, 2012.
5. J. Behrmann, W. Grathwohl, R. T. Chen, D. Duvenaud, and J.-H. Jacobsen. Invertible residual networks. In International Conference on Machine Learning, pages 573--582, 2019.