Improving data-flow analysis with path profiles

Author:

Ammons Glenn1,Larus James R.1

Affiliation:

1. Department of Computer Sciences, University of Wisconsin-Madison, 1210 West Dayton St., Madison, WI

Abstract

Data-flow analysis computes its solutions over the paths in a control-flow graph. These paths---whether feasible or infeasible, heavily or rarely executed---contribute equally to a solution. However, programs execute only a small fraction of their potential paths and, moreover, programs' execution time and cost is concentrated in a far smaller subset of hot paths .This paper describes a new approach to analyzing and optimizing programs, which improves the precision of data flow analysis along hot paths. Our technique identifies and duplicates hot paths, creating a hot path graph in which these paths are isolated. After flow analysis, the graph is reduced to eliminate unnecessary duplicates of unprofitable paths. In experiments on SPEC95 benchmarks, path qualification identified 2--112 times more non-local constants (weighted dynamically) than the Wegman-Zadek conditional constant algorithm, which translated into 1--7% more dynamic instructions with constant results.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computing maximum fixed point solutions over feasible paths in data flow analyses;Science of Computer Programming;2023-06

2. Jyane: Detecting Reentrancy vulnerabilities based on path profiling method;2021 IEEE 27th International Conference on Parallel and Distributed Systems (ICPADS);2021-12

3. An efficient approach for taint analysis of android applications;Computers & Security;2021-05

4. ContractGuard: Defend Ethereum Smart Contracts with Embedded Intrusion Detection;IEEE Transactions on Services Computing;2019

5. Detailed heap profiling;ACM SIGPLAN Notices;2018-12-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3