On the Impact of Lower Recall and Precision in Defect Prediction for Guiding Search-based Software Testing

Author:

Perera Anjana1ORCID,Turhan Burak2ORCID,Aleti Aldeida3ORCID,Böhme Marcel4ORCID

Affiliation:

1. Faculty of Information Technology, Monash University, Melbourne, Australia and Oracle Labs, Brisbane, Australia

2. Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland and Monash University, Melbourne, Australia

3. Faculty of Information Technology, Monash University, Melbourne, Australia

4. Max Planck Institute for Security and Privacy, Bochum, Germany and Monash University, Melbourne, Australia

Abstract

Defect predictors, static bug detectors, and humans inspecting the code can propose locations in the program that are more likely to be buggy before they are discovered through testing. Automated test generators such as search-based software testing (SBST) techniques can use this information to direct their search for test cases to likely buggy code, thus speeding up the process of detecting existing bugs in those locations. Often the predictions given by these tools or humans are imprecise, which can misguide the SBST technique and may deteriorate its performance. In this article, we study the impact of imprecision in defect prediction on the bug detection effectiveness of SBST. Our study finds that the recall of the defect predictor, i.e., the proportion of correctly identified buggy code, has a significant impact on bug detection effectiveness of SBST with a large effect size. More precisely, the SBST technique detects 7.5 fewer bugs on average (out of 420 bugs) for every 5% decrements of the recall. However, the effect of precision, a measure for false alarms, is not of meaningful practical significance, as indicated by a very small effect size. In the context of combining defect prediction and SBST, our recommendation is to increase the recall of defect predictors as a primary objective and precision as a secondary objective. In our experiments, we find that 75% precision is as good as 100% precision. To account for the imprecision of defect predictors, in particular low recall values, SBST techniques should be designed to search for test cases that also cover the predicted non-buggy parts of the program, while prioritising the parts that have been predicted as buggy.

Funder

Australian Research Council

Faculty Postgraduate Publications Award

Faculty of Information Technology of Monash University

Publisher

Association for Computing Machinery (ACM)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multispectral Semantic Segmentation for Land Cover Classification: An Overview;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3