Disk cache—miss ratio analysis and design considerations

Author:

Smith Alan J.1

Affiliation:

1. Univ. of California, Berkeley

Abstract

The current trend of computer system technology is toward CPUs with rapidly increasing processing power and toward disk drives of rapidly increasing density, but with disk performance increasing very slowly if at all. The implication of these trends is that at some point the processing power of computer systems will be limited by the throughput of the input/output (I/O) system. A solution to this problem, which is described and evaluated in this paper, is disk cache . The idea is to buffer recently used portions of the disk address space in electronic storage. Empirically, it is shown that a large (e.g., 80-90 percent) fraction of all I/O requests are captured by a cache of an 8-Mbyte order-of-magnitude size for our workload sample. This paper considers a number of design parameters for such a cache (called cache disk or disk cache), including those that can be examined experimentally (cache location, cache size, migration algorithms, block sizes, etc.) and others (access time, bandwidth, multipathing, technology, consistency, error recovery, etc.) for which we have no relevant data or experiments. Consideration is given to both caches located in the I/O system, as with the storage controller, and those located in the CPU main memory. Experimental results are based on extensive trace-driven simulations using traces taken from three large IBM or IBM-compatible mainframe data processing installations. We find that disk cache is a powerful means of extending the performance limits of high-end computer systems.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference79 articles.

1. DASD cache for file subsystem;BATALDEN G. D.;IBM Tech. Disc. Bull.,1984

Cited by 105 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mitigating Cache Pollution Attack Using Deep Learning in Named Data Networking (NDN);Lecture Notes in Networks and Systems;2024

2. Collaborative Edge Data Caching In Online;2022 Second International Conference on Advanced Technologies in Intelligent Control, Environment, Computing & Communication Engineering (ICATIECE);2022-12-16

3. Bibliography;Storage Systems;2022

4. Introduction;Storage Systems;2022

5. SHARC;Proceedings of the 22nd International Middleware Conference;2021-12-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3