Lower your guards: a compositional pattern-match coverage checker

Author:

Graf Sebastian1,Peyton Jones Simon2,Scott Ryan G.3

Affiliation:

1. KIT, Germany

2. Microsoft Research, UK

3. Indiana University, USA

Abstract

A compiler should warn if a function defined by pattern matching does not cover its inputs—that is, if there are missing or redundant patterns. Generating such warnings accurately is difficult for modern languages due to the myriad of language features that interact with pattern matching. This is especially true in Haskell, a language with a complicated pattern language that is made even more complex by extensions offered by the Glasgow Haskell Compiler (GHC). Although GHC has spent a significant amount of effort towards improving its pattern-match coverage warnings, there are still several cases where it reports inaccurate warnings. We introduce a coverage checking algorithm called Lower Your Guards, which boils down the complexities of pattern matching into guard trees . While the source language may have many exotic forms of patterns, guard trees only have three different constructs, which vastly simplifies the coverage checking process. Our algorithm is modular, allowing for new forms of source-language patterns to be handled with little changes to the overall structure of the algorithm. We have implemented the algorithm in GHC and demonstrate places where it performs better than GHC’s current coverage checker, both in accuracy and performance.

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Live Pattern Matching with Typed Holes;Proceedings of the ACM on Programming Languages;2023-04-06

2. Linked visualisations via Galois dependencies;Proceedings of the ACM on Programming Languages;2022-01-12

3. Compiling pattern matching to in-place modifications;Proceedings of the 20th ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences;2021-10-17

4. Haskell⁻¹: automatic function inversion in Haskell;Proceedings of the 14th ACM SIGPLAN International Symposium on Haskell;2021-08-18

5. Intensional datatype refinement: with application to scalable verification of pattern-match safety;Proceedings of the ACM on Programming Languages;2021-01-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3