A hybrid approach for efficient Web service composition with end-to-end QoS constraints

Author:

Alrifai Mohammad1,Risse Thomas1,Nejdl Wolfgang1

Affiliation:

1. L3S Research Center and University of Hanover, Germany

Abstract

Dynamic selection of Web services at runtime is important for building flexible and loosely-coupled service-oriented applications. An abstract description of the required services is provided at design-time, and matching service offers are located at runtime. With the growing number of Web services that provide the same functionality but differ in quality parameters (e.g., availability, response time), a decision needs to be made on which services should be selected such that the user's end-to-end QoS requirements are satisfied. Although very efficient, local selection strategy fails short in handling global QoS requirements. Solutions based on global optimization, on the other hand, can handle global constraints, but their poor performance renders them inappropriate for applications with dynamic and realtime requirements. In this article we address this problem and propose a hybrid solution that combines global optimization with local selection techniques to benefit from the advantages of both worlds. The proposed solution consists of two steps: first, we use mixed integer programming (MIP) to find the optimal decomposition of global QoS constraints into local constraints. Second, we use distributed local selection to find the best Web services that satisfy these local constraints. The results of experimental evaluation indicate that our approach significantly outperforms existing solutions in terms of computation time while achieving close-to-optimal results.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 182 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3