Predicting Chinese Stock Market Price Trend Using Machine Learning Approach
Author:
Affiliation:
1. Institution of Automation, Chinese Academy of Sciences, Beijing, China
2. The Governor's Academy, Massachusetts, United States of America
Publisher
ACM Press
Reference15 articles.
1. Bisoi, R. and P.K. Dash. 2014. A hybrid evolutionary dynamic neural network for stock market trend analysis and prediction using unscented Kalman filter. Applied Soft Computing, 19, 41--56.
2. Chang, T.S. 2011. A comparative study of artificial neural networks, and decision trees for digital game content stocks price prediction. Expert Systems with Applications, 38(12), 14846--14851.
3. Chen, R.Y. and B. Pan. 2016. Chinese Stock Index Futures Price Fluctuation Analysis and Prediction Based on Complementary Ensemble Empirical Mode Decomposition. Mathematical Problems in Engineering, 2016.
4. Cocianu, C.L. and H. Grigoryan. 2016. Machine Learning Techniques for Stock Market Prediction. A Case Study of Omv Petrom. Economic Computation and Economic Cybernetics Studies and Research, 50(3), 63--82.
5. Fama, E. 1970. Efficient market hypothesis: A Review of Theory and Empirical Work, 1970.
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Optimisation-Enabled Transfer Learning Framework for Stock Market Prediction;Journal of Information & Knowledge Management;2024-01-25
2. Novel Approach for Stock Prediction Using Technical Analysis and Sentiment Analysis;Lecture Notes in Networks and Systems;2024
3. Predicting Stock Market Trends with a Transfer Learning Model Based on CNN-LSTM Architecture;2023 International Conference on Sustainable Communication Networks and Application (ICSCNA);2023-11-15
4. Stock Movement Prediction Based On Technical Indicators Applying Hybrid Machine Learning Models;2023 International Symposium on Networks, Computers and Communications (ISNCC);2023-10-23
5. Forecasting in stock market with Machine Learning: A State of Art;2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT);2023-07-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3