A Unified Approach for Resilience and Causal Responsibility with Integer Linear Programming (ILP) and LP Relaxations

Author:

Makhija Neha1ORCID,Gatterbauer Wolfgang1ORCID

Affiliation:

1. Northeastern University, Boston, MA, USA

Abstract

What is a minimal set of tuples to delete from a database in order to eliminate all query answers? This problem is called "the resilience of a query" and is one of the key algorithmic problems underlying various forms of reverse data management, such as view maintenance, deletion propagation and causal responsibility. A long-open question is determining the conjunctive queries (CQs) for which resilience can be solved in PTIME. We shed new light on this problem by proposing a unified Integer Linear Programming (ILP) formulation. It is unified in that it can solve both previously studied restrictions (e.g., self-join-free CQs under set semantics that allow a PTIME solution) and new cases (all CQs under set or bag semantics). It is also unified in that all queries and all database instances are treated with the same approach, yet the algorithm is guaranteed to terminate in PTIME for all known PTIME cases. In particular, we prove that for all known easy cases, the optimal solution to our ILP is identical to a simpler Linear Programming (LP) relaxation, which implies that standard ILP solvers return the optimal solution to the original ILP in PTIME. Our approach allows us to explore new variants and obtain new complexity results. 1) It works under bag semantics, for which we give the first dichotomy results in the problem space. 2) We extend our approach to the related problem of causal responsibility and give a more fine-grained analysis of its complexity. 3) We recover easy instances for generally hard queries, including instances with read-once provenance and instances that become easy because of Functional Dependencies in the data. 4) We solve an open conjecture about a unified hardness criterion from PODS 2020 and prove the hardness of several queries of previously unknown complexity. 5) Experiments confirm that our findings accurately predict the asymptotic running times, and that our universal ILP is at times even quicker than a previously proposed dedicated flow algorithm.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3