Affiliation:
1. Universidad de Zaragoza
2. Max Planck Institute for Biological Cybernetics
3. New York University
4. Universidad de Zaragoza and Instituto de Investigación en Ingeniería de Aragón (I3A)
Abstract
Most existing image content has low dynamic range (LDR), which necessitates effective methods to display such legacy content on high dynamic range (HDR) devices. Reverse tone mapping operators (rTMOs) aim to take LDR content as input and adjust the contrast intelligently to yield output that recreates the HDR experience. In this paper we show that current rTMO approaches fall short when the input image is not exposed properly. More specifically, we report a series of perceptual experiments using a Brightside HDR display and show that, while existing rTMOs perform well for under-exposed input data, the perceived quality degrades substantially with over-exposure, to the extent that in some cases subjects prefer the LDR originals to images that have been treated with rTMOs. We show that, in these cases, a simple rTMO based on gamma expansion avoids the errors introduced by other methods, and propose a method to automatically set a suitable gamma value for each image, based on the image key and empirical data. We validate the results both by means of perceptual experiments and using a recent image quality metric, and show that this approach enhances visible details without causing artifacts in incorrectly-exposed regions. Additionally, we perform another set of experiments which suggest that spatial artifacts introduced by rTMOs are more disturbing than inaccuracies in the expanded intensities. Together, these findings suggest that when the quality of the input data is unknown, reverse tone mapping should be handled with simple, non-aggressive methods to achieve the desired effect.
Funder
Deutsche Forschungsgemeinschaft
Gobierno de Aragon
Ministerio de Economía y Competitividad
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Graphics and Computer-Aided Design
Cited by
80 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献