A Green Stackelberg-game Incentive Mechanism for Multi-service Exchange in Mobile Crowdsensing

Author:

Lu Jianfeng1,Zhang Zhao2,Wang Jiangtao3,Li Ruixuan4,Wan Shaohua5

Affiliation:

1. Wuhan University of Science and Technology, Wuhan, China and Zhejiang Normal University, Jinhua, China

2. Zhejiang Normal University, Jinhua, China

3. Coventry University, Coventry, UK

4. Huazhong University of Science and Technology, Wuhan, China

5. Zhongnan University of Economics and Law, Wuhan, China

Abstract

Although mobile crowdsensing (MCS) has become a green paradigm of collecting, analyzing, and exploiting massive amounts of sensory data, existing incentive mechanisms are not effective to stimulate users’s active participation and service contribution in multi-service exchange in MCS due to its specific features: a large number of heterogeneous users have asymmetric service requirements, workers have the freedom to choose sensing tasks as well as participation levels, and multiple sensing tasks have heterogeneous values which may be untruthful declared by the corresponding requesters. To address this issue, this article develops a green Stackelberg-game incentive mechanism to achieve selective fairness, truthfulness, and bounded efficiency while reducing the burden on the platform. First, we model the multi-service exchange problem as a Stackelberg multi-service exchange game consisting of multi-leader and multi-follower, in which each requester as a leader first chooses the reward declaration strategy and thus the payment for each sensing task, each worker as a follower then chooses the sensing plan strategy to maximize her own utility. We next introduce the concept of virtual currency to maintain the selective fairness to balance service request and service provision between users, in which a user earns/consumes virtual currency for providing/receiving services, and thus no one can always get services without providing services. Then, we present two novel algorithms to compute the unique Nash equilibrium for the sensing plan determination game and the reward declaration determination game, respectively, which together forms a unique Stackelberg equilibrium for the proposed game. Afterwards, we theoretically prove that the proposed green Stackelberg-game incentive mechanism achieves the desirable properties of selective fairness, truthfulness, bounded efficiency. Finally, extensive evaluation results are provided to support the validity and effectiveness of our mechanism compared with both baseline and theoretical optimal approaches.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3